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A simple two-dimensional model for the deformation of auxetic microporous polymers 
(those with a negative Poisson's ratio) has been developed. This model network of 
rectangular nodules interconnected by fibrils has been further developed to include the 
possibilities of fibril hinging, flexure and stretching. Expressions for strain-dependent 
Poisson's ratio and Young's modulus have been derived and compared with experimental 
results on microporous PTFE and UHMWPE. A combination of the hinging mode followed 
by the stretching mode of deformation can be used to explain the general features of the 
experimental data for these auxetic polymers. The force coefficients governing the different 
modes of deformation are dependent on fibril dimensions and intrinsic material properties. 
By varying the geometry of the network, the model can be used to predict different 
combinations of Poisson's ratio with modulus, from large positive through to large negative 
values. 

1. Introduction 
An increasing number of materials are now known to 
exhibit a negative Poisson's ratio, that is, they expand 
laterally in response to a longitudinal tensile load. 
Termed "auxetic materials" [1], the mechanisms re- 
sponsible for the negative Poisson's ratio effect can act 
on an atomic or molecular level, as is the case for the 
a-cristobalite polymorph of crystalline silica [2-4], or 
on a larger microstructural scale in, for example, 
microporous polymers [5-7] and, on a larger scale, in 
auxetic foams [8, 9]. Potential benefits of auxetic ma- 
terials include increased fracture toughness, enhanced 
indentation resistance [8, 10, 11] and improved drapa- 
bility [12]. 

In the case of microporous polymeric materials, 
there are published experimental data for auxetic 
forms of polytetrafluoroethylene (PTFE) [5] and 
ultra-high molecular weight polyethylene (UHMWPE) 
[13,14] showing strain-dependent behaviour. The 
microstructures of these polymers consist of a network 
of nodules of material interconnected by fibrils. The 
arrangement of the nodules and fibrils determines 
whether or not the Poisson's ratio is negative or posit- 
ive. A simple geometric node-fibril (NF) model has 
been developed to interpret these data [13-15] con- 
sisting of rigid rectangular nodes connected by freely 
hinged inextensible rods, The model has been found to 
reproduce some of the features of the Poisson's ratio 

behaviour with strain, although the deformation over 
the total strain range covered experimentally has so 
far been unexplained by the model. 

In this work, the NF model has been extended to 
allow the flexure and stretching as well as hinging of 
the fibrils. Expressions for Poisson's ratio and Young's 
modulus are derived for each mode of deformation 
and the behaviour of these mechanical properties with 
geometry is discussed and compared with the appro- 
priate experimental data. 

2. The node-fibril model for auxetic 
microporous polymers 

The tensile NF network model for microporous PTFE 
is shown schematically in Fig. la. The rectangular 
nodules (major and minor axis lengths a and b, respec- 
tively, with the major axis aligned along the x direc- 
tion) have previously [6] been considered to be con- 
nected by freely hinged, inextensible rods (fibrils) of 
length, l, at an angle, <,, to the x axis. Under a tensile 
stress in the x direction, the fibrils hinge, thereby 
reducing the value of ~ until ~ = 0 ~ is reached. Conse- 
quently, the nodules move apart in both the x and 
y directions, and the structure exhibits a negative 
Poisson's ratio. In this work the NF model has been 
developed to describe the Young's moduli as well as 
Poisson's ratios for the hinging model. It was further 
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Figure 1 Schematic diagram of the nodule-fibril (NF) model, show- 
ing (a) general parameters in a partially extended network, (b) fully 
densified network with l = b/2, s0 = 90 ~ and undeformed, partially 
open networks resulting fi'om (c) 1 < b/2, (d) I > b/2. 

extended to describe fibril stretching and flexing. The 
model was then used to interpret both the Young's 
modulus and Poisson's ratio data for PTFE  and 
UHMW P E,  including the large variations in these 
properties with strain. 

To obtain the Young's modulus from this model 
some form of elastic deformation process must be 
included. A previous approach [15] incorporated 
a separate independent set of springs between the 
nodules. A more realistic approach embodies the de- 
formation mechanism into the fibrils themselves. The 
fibrils and nodules are of the same material but the 
fibrils can have a wide range of modulus as a result of 
the fabrication process, producing different draw ra- 
tios. If the nodules and fibrils have similar moduli, 
then deformation will be predominantly due to fibril 
stretching or flexing. If the fibrils have a much larger 
modulus than the nodules, fibril hinging will occur 
with local deformation of the nodule material at the 
base of the fibrils. For  each mode of deformation we 
consider a force coefficient Ki where i represents the 
deformation mode. K can then be related to the intrin- 
sic material parameters. Using the normal convention, 
the force coefficients employed in this paper are de- 
fined by 

APi  = g iz~x i  (1) 

where for linear displacements APi is the change in 
force F and Axi is the change in length x, and for 
angular displacements APi is the change in applied 
moment M and Axi is the change in the appropriate 
angle 0. 

2.1. Fibril hinging 
In this first model, the fibrils are considered to be 
inflexible rods, free to rotate. The Poisson's ratio, v~y, 
under a load in the x direction for the NF  model 

(Fig. la) has been found to be [6] 

- cosc~(a + lcose 0 
vx, = (2) 

sincz(b -/sin<z) 

The unit-cell lengths for the N F  model are 

X = 2(a +/cos<z) (3) 

Y = 2(b -/sin<z) (4) 

and the undeformed lengths are given by substituting 
the initial angle % for a in Equations 3 and 4. Follow- 
ing the procedure outlined by Evans and Caddock [6] 
the engineering Poisson's ratio, v~y (i.e. related to the 
initial unit-cell lengths) is easily shown to be 

- cos<z(a + lcosao) 
very = sin~(b - lsin~0) (5) 

For  the Young's moduli of this structure, we con- 
sider a hinging force coefficient Kh, where, from Equa- 
tion 1 (i = h), we have 

I A F  = KhA~ (6) 

The left-hand side of Equation 6 is the change, AM, in 
the applied moment, M, to the fibril of length, l, due to 
a change AF, in the force, F, applied perpendicular to 
the end of the fibril. A ~ is the angular displacement of 
the fibril due to the change in the applied moment 
- see Fig. 2. 

Consider a unit thickness of the unit cell perpen- 
dicular to the x - y  plane (Fig. la). The change, AFx, in 
the applied load due to a change, A~x, in the applied 
stress in the-x direction is 

AFx = A ~ Y  (7) 

and hence the change, AF, in the perpendicular force, 
F, applied to each fibril is 

AF = AF~sina/2  = A~xYs ina /2  (8) 

The change in X due to hinging under a small change, 
AFt,  in the applied load is 

AX = 2Ahsin<, 

= 2/A~sin~ (9) 

where Ah is the (small) displacement of the end of each 
fibril during hinging. From Equations 6 and 8 

A ~  = IAcrxYs in<z /2Kh  (10) 

In the limit of infinitesimal increments in applied 
stress, Equation 9 becomes 

d X  = d ( s x y l 2 s i n 2 ~ / K h  (11) 

The Young's modulus in the x direction, E~, at any 
given strain, e~, during a non-linear elastic deforma- 
tion is defined as 

Ex = d c ~ / d ~  (12) 

where de~ is an infinitesimal strain increment due to 
an infinitesimal increment in applied stress, dcrx. For  
linear elasticity, Equation 12 is equivalent to 
Ex = CSx/a,, and is constant. However, for strain-de- 
pendent non-linear elastic behaviour, the two expres- 
sions yield different values; in this case, Equation 12 
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Figure 2 (a) Fibril hinging under tension of the NF network in the 
x direction. (b) Fibril hinging under compression of the NF net- 
work in the y direction. (c) Fibril flexure under tension of the NF 
network in the x direction. (d) Fibril flexure under compression of 
the NF network in the y direction. 

~ A0 

(the tangent modulus) is the correct expression to use 
E16,17]. dax is defined as 

ds~ = d X / X  (13) 

From Equations 3, 4, 11 13, the Young's modulus in 
the x direction for the NF model is 

Kh ( a + l c o s ~ )  
E~ = /Zsin2 s (b - / s i n s )  (14) 

The engineering Young's modulus, E~,, is obtained by 
substituting the original unit-cell lengths Xo and Yo 
for X and Y, respectively, in Equations 11 and 13, 
giving 

K h (a + lcosso) 
E~ = /2sin20{ (b - lsinso) (15) 

The expression for Poisson's ratio due to a load in 
the y direction for the NF model has been derived as 
[15] 

-- sine~(b - / s i n s )  
vy~ = coss(a + l cos s )  (16) 

where Ac~y is the change in the applied stress in the 
y direction. The change in Y due to hinging is 

AY = 2Ahcoss 

= 2/Act cosc~ (19) 

where A h is the (small) displacement of the end of each 
fibril during hinging. From Equations 6 and 18 

Ao~ = IAc~yX coss/2Kh (20) 

Therefore, in the limit of infinitesimal increments in 
applied stress, Equation 19 becomes 

d Y  = d ( y y X I 2 c o s 2 s / K h  (21) 

and hence the Young's modulus in the y direction in 
this case is 

Ey = do-y/d~y 

Kh (b - 1 sin s) 
(22) 

- -  l Z c o s Z s  (a  q- I c o s s )  

The engineering Young's modulus in the y direction is 
then 

Kh (b - l sin So) 
g~ = /2cos2~( a + /cosso)  (23) 

All these expressions are equally valid in tension or 
compression. 

For an orthotropic material, the condition of a sym- 
metric stiffness matrix requires [18] 

vxyEy  = VyxE x (24) 

Also, the requirement that the strain energy of an 
orthotropic material be positive definite for static 
equilibrium leads to [18] 

Iv.I <_ (gx/G) "2 (25) 

From Equations 2, 14, 16 and 22 we have 

VxyEy = vyxEx 

- Kh/I z s i n sco s s  (26) 

and 

lvx,[ = (Ex/Ey) t/z (27) 

Hence the N F  model satisfies the requirements of 
a symmetric stiffness matrix (Equation 24) and a posit- 
ive definite strain energy (Equation 25) for deforma- 
tion due to hinging of the fibrils if the fibrils are 
considered to be inextensible rods. 

Table I contains the relevant expressions for the 
elastic moduli (including the engineering moduli) due 
to hinging. 

and the engineering Poisson's ratio is 

- sins(b - lsinso) 
e = (17) Vyx 

coset(a + lcosso) 

In this case the component of force causing fibril 
hinging is (see Fig. 2b) 

AF = AFycos~/2 = AcyyXcoss/2 (18) 

2.2. Fibril flexure 
We now derive expressions for the Poisson's ratios 
and Young's moduli in the NF model by considering 
the fibrils as inextensible but flexible rods. We shall 
assume that the shear deformation of the rods can be 
neglected as can deformation of the nodules. This is 
valid for all fibril aspect ratios so far observed [5, 7]. 
The analysis closely follows the approach adopted in 
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the derivation of the elastic properties of two-dimen- 
sional honeycombs due to flexure of the cell walls 
[-19]. 

Consider flexure of-a fibril in the NF model (length 
I, fibril angle, ~) under a change, Acy~, in a tensile load 
in the x direction (Fig. 2c). Using Equation 1 the 
flexure force coefficient, Kf, is defined as 

Kf = AM/A0 (28) 

where AM is the change in the bending moment 
M applied to the fibril and A0 is the small change (i.e. 
A0 = tan A0) in the slope of the midpoint of the fibril 
with respect to the fibril orientation (see Fig. 2c). The 
change in the bending moment applied to the fibril is 

A M  = A F l / 2  (29) 

where 

AF = AFxsin0t/2 (30) 

and AF~ is given by Equation 7. From standard beam 
theory [20] 

AF(I /2 )  2 
A 0  - ( 3 1 )  

2EsI 

where Es is the intrinsic material Young's modulus 
and I is the second moment of inertia of the beam 
(fibril). The deflection, A f, of the fibril due to flexure 
(see Fig. 2c) is given by 

2AF( I /2 )  3 
Af = (32) 

3 EsI 

Hence from Equations 31 and 32 

A0 = 3Af/21 (33) 

Substituting Equations 7, 29, 30 and 33 into Equation 
28 we find 

Acyx Y I 2 sin~ 
A f  - (34) 

6Kf 

The changes in the unit-cell lengths due to deflection 
of the fibrils in flexure at angle, ~, are 

AX = 2Afsin~ (35) 

AY = 2Afcos~ (36) 

In the limit of infinitesimal unit length changes the 
infinitesimal changes in strain are, therefore 

d~x = 2 d f s i n ~ / X  (37) 

d~y = 2dfcos at/Y (38) 

where X and Y are given by Equations 3 and 4, 
respectively. The infinitesimal changes in engineering 
strain are found by substituting the initial unit-cell 
lengths Xo and Yo for X and Y, respectively, in 
Equations 37 and 38. For the same reason that Equa- 
tion 12 is the correct definition of Young's modulus 
for a non-linear deformation, the Poisson's ratio due 
to a uniaxial applied stress along the x direction for 
non-linear elastic behaviour, referred to as Poisson's 
function, is defined 1-16, 21] as 

v~y = - d~y/d~ (39) 
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Hence, we find for deformation of the node-fibril 
network due to flexure of the fibrils at an angle, ~, to 
the x axis 

- cosa(a + /cos~)  
v~y = sina(b - lsina) (40) 

and 

- cos~(a + /cosao)  
e = (41) Vxy 

sin0t(b - I sin~o) 

From Equations 34 and 37 we have 

de~ = dcy~Yl 2 s i n 2 ~ / 3 K f X  (42) 

yielding a Young's modulus in the x direction due to 
flexure of the fibrils of 

3Kf (a + /cos~)  
Ex - /2sin2ct (b - / s i n u )  (43) 

The expression for Young's modulus due to instan- 
taneous changes in engineering stress and strain is 
found by replacing the unit-cell lengths in Equation 42 
with the undeformed unit-cell lengths 

3Kf (a + lcosczo) 
E~, - 12sin2a (b - lsin~0) (44) 

The changes in the unit-cell lengths due to flexure 
under a change A~y in a y-directed load are also given 
by Equations 35 and 36 and hence the Poisson's ratio 
due to a uniaxial stress in the y direction is 

Vyx 
- d~x 
dey 

- sina(b - lsin0t) 

cos0t(a +/cos0t) 
(45) 

and the engineering Poisson's ratio is 

- sincz(b - lsin~o) 
v~x = cosa(a +/cos~0) (46) 

The component of force causing flexure due to a y- 
directed load (see Fig. 2d) is 

AF = AFycos~t/2 

= A~yXcos~/2 (47) 

Substituting Equations 29, 33 and 47 into Equation 28 
yields 

A f  - Ac~yXI2 c~ (48) 
6Kf 

From Equations 38 and 48 we find 

d% = dcyyXl 2 cOsz~/3Kf  Y (49) 

in the limit of infinitesimal changes in applied load. 
Hence the Young's modulus in the y direction due to 
flexure is 

Ey = dc~y/d~y 

3Kf ( b - / s i n ~ )  
I 2 COS2~ (a -q- Icos~)  

(50) 



The engineering Young's modulus in the y direction is 
simply 

3Kf (b - lsinao) 
E~ - 12cos20~(a + icosoto) (51) 

In the analysis of the elastic properties of a honey- 
comb network [19] the deformation is considered to 
be due to flexure of the diagonal honeycomb cell walls 
of length, I, thickness, t, depth, w, and intrinsic 
Young's modulus, E~. This is exactly equivalent to the 
deformation of the node-fibril network of Fig. la due 
to flexure of the (diagonal) fibrils. The elastic moduli of 
a honeycomb network deforming due to flexure are 
E19] 

Vxy ~ Vyx 1 

cos [3 X 
- (52) 

sin[3 Y 

( % (  5 ) 
Ex= Es 1 ]\12ZYsin2~.]  (53) 

[ wtS\ Y 
E , = ~ E s ~ - ) ( - 1 2 Z X ~ o s 2 ~ )  (54) 

where [3 is the honeycomb angle (equivalent to 00, 
X and Y are the unit-cell lengths (equivalent to, 
though not the same as, Equations 3 and 4, respective- 
ly), and Z is the depth of the unitcell which, for 
honeycombs, is equal to the depth of the cell wall, w. 
For  comparison of the elastic moduli expressions for 
the honeycomb and NF  models it is necessary to use 
expressions for a re-entrant honeycomb, i.e. [3 = - 
in Equations 52-54. Substituting Equations 3 and 
4 into Equations 40 and 45 then yields identical N F  
model expressions to the honeycomb model Poisson's 
ratios of Equation 52. 

The NF  model Young's moduli were derived for 
a unit thickness of the unit cell perpendicular to the 
x-y  plane. However, it is easily shown that for an 
arbitrary unit-cell depth of Z, the NF  model Young's 
moduli become 

( x )  
Ex = 3Kf -/:ZITsin2: z (55) 

and 

Y) 
Ey = 3Kf 12ZX~os2c~ (56) 

Comparison of the Young's moduli in the two models 
(Equation 55 with Equation 53, and Equation 56 with 
Equation 54 yields) 

Kf = Eswt3/31 (57) 

Hence the flexure force coefficient is a function of the 
intrinsic fibril Young's modulus ,  Es, and the fibril 
dimensions. Note that, whereas Z = w in the honey- 
comb model, this is not necessarily the case in the N F  
model, because Z will depend on the node-fibril 
microstructure in the z direction. 

The expressions for the elastic moduli due to fibril 
flexure in the N F  model are also included in Table I. It 
is to be noted that the Poisson's ratios due to flexure 
are identical to those due to hinging of the fibrils. 
Similarly, the expressions for the Young's moduli are 
almost identical between the two deformation mecha- 
nisms, differing only by a factor of 3 and the nature of 
the force coefficients involved. As before, Equations 24 
and 25 are satisfied. 

2.3. Fibril stretching 
We now consider the case of fibrils that are assumed 
to be extensible rods. Effects due to fibril hinging and 
flexure will be ignored, i.e. for any fibril angle, a, only 
the fibril length will be allowed to vary, with the fibril 
remaining straight always. Because we are treating the 
fibrils as elastic rods, we can consider tension in both 
directions. Compression will also give the same 
answer. 

Fibril extension under a tensile load applied to the 
node-fibril network in the x direction is illustrated in 
Fig. 3. The stretching force coefficient is defined from 
Equation 1 as 

Ks = AF/As  (58) 

where AF is the change in the component of the load 
applied along the fibril length and As is the axial 
extension of the fibril. 

Consider the axial extension of a fibril at angle 0~ to 
the x axis due to a small change, k~x, in the applied 
stress in the x direction. The changes in the unit-cell 
lengths due to fibril extension are 

A X =  2Ascosa (59) 

A Y = - 2As sinc~ (60) 

For  an infinitesimal change in applied load then the 
infinitesimal changes in strain due to fibril stretching 
are, therefore 

dgx = 2ds cosc~/X (61) 

dey = - 2dss ina /Y  (62) 

From Equations 3, 4, 39, 61 and 62 we find the 
Poisson's ratio due to fibril stretching under a uniaxial 
applied stress along the x direction is 

sin~(a + l c o s ~ )  
Vxy = cos~(b - / s i n ~ )  (63) 

Similarly, substituting the initial unit-cell lengths X0 
and Yo for X and Y, respectively, in Equations 61 and 
62 we find 

sina(a + lcos%) 
v e, = (64) 

cos ~ (b - I sin So) 

The component, AF, along each fibril of the change in 
applied force AFx/2 is 

AF = AFx cosc~/2 (65) 
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T A B L E  I Poisson's ratio, engineering Poisson's ratio. Young's modulus and engineering Young's modulus expressions for the hinging, 
flexure and stretching modes of deformation in the NF model for microporous polymers assuming the fibrils act as rods 

Hinging Flexure Stretching 

v~y - cos~(a + lcos~) cosc~(a + lcos~) sin~(a + lcos~) 

s ina(b - / s i n e  0 sin~(b - / s i n e  0 cosc~ (b - lsin~) 
v~y - cos~(a + / c o s % )  cos~(a + lcos~o) sin~(a + lcos~0) 

sin~(b - / s i n % )  sina(b - l sinao) cos~(b - lsin~0) 
v~ - sinc~ (b - / s i n e  0 - s i n ~ ( b  - / s i n ~ )  cos~(b - / s i n e  0 

cos~(a +/cosec) cos~(a + / c o s ~ )  s ina(a  + lcosc0 
v~ - sinc~(b lsin~o) -- sin~(b l s i n ~ )  cosc~(b - / s i n % )  

cosa(a  + lcosTo) cos~(a + / c o s % )  sinc~(a + / c o s % )  
E~ Ku(a + lcos~) 3K~(a +/cos~) K~(a + lcos~) 

12 sin2~(b - / s i n e  0 12 s i n ~ ( b  - / s i n ~ )  cos2~(b - / s i n ~ )  
E~ K~(a +/cos%) 3Kr(a + lcosc~o) K,(a +/cosa0) 

l ~ s i n ~ ( b  - lsinao) 1 ~ sin~a(b - lsina0) cosa~(b - / s i n ~ o )  
Ey Kh (b - I since) 3Kf (b - I sina) K~ (b - l sina) 

12cos2~(a + / c o s ~ )  12 cosZct(a + lcos~) sinZ~(a + / c o s a )  
E~ Kh (b - l sin ao) 3Kf (b - l sin ao) K~ (b - 1 sina0) 

12 c o s ~ ( a  + / c o s % )  12cosZa(a + lcos~0) sinac~(a + / cos~o)  

X 

AFt/2 

AF 

AFx/2 

A 
Figure 3 Fibril extension under tension of the NF network in the 
x direction. 

where AFx is given by Equation 7. From Equations 7, 
58 and 65 we find, for an infinitesimal change in 
applied load that Equation 61 becomes 

da~ = d ~  Y cos 2 a/K~X (66) 

Hence the Young's modulus of the NF  model due to 
fibril extension under an applied load in the x direc- 
tion is 

E x =  Ks ( a + l c o s a )  (67) 
cos2~ (b - l sina) 

Once again, substituting the undeformed unit-cell 
lengths for the deformed lengths enables the engineer- 
ing Young's modulus due to fibril stretching to be 
derived 

K~ (a +/cos t%) 
E ~  - - -  ( 6 8 )  

cosZ0~ (b - I sin~o) 

Now consider deformation of the unit cell due to 
a small change, Acyy, in an applied stress in the y direc- 
tion. Equations 61 and 62 again correspond to the 
infinitesimal changes in strain in the x and y directions 
due to an infinitesimal change in the applied load. 
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Hence the Poisson's ratio due to a uniaxial stress in 
the y direction is 

cos ~ (b - I sin~) 
(69) 

vy~ = sin~(a + / c o s ~ )  

and the engineering Poisson's ratio is 

cos~(b - l sin~o) 
e 

vyx sina(a + /cos~o)  (70) 

The change in the component of a y-directed force 
acting along the fibril length is 

AF = - AFysincl~/2 

- AcyyX sina/2 (71) 

In the limit of infinitesimal changes in applied force, 
Equations 58, 62 and 71 yield 

day = d~yX sin2~/Ks Y (72) 

and hence the Young's modulus in the y direction due 
to fibril stretching is 

K~ ( b - l s i n a )  
Ey = sin2 a (a + / c o s a )  (73) 

and the engineering Young's modulus is 

Ks (b - lsin~0) 
E~ = sin2 a (a + / cosao )  (74) 

From Equations 63, 67, 69 and 73 we have 

vxyE~, = vyxEx 

= Ks/sina cos~ (75) 

and 

I Vxj, ] = (E x / Ey)1/2 (76) 

satisfying both the requirements of a symmetric stiff- 
ness matrix and a positive definite strain energy. 



3. Results 
The expressions for the elastic moduli from the N F  
model for the hinging, flexure and stretching deforma- 
tion modes are summarized in Table I. In this section 
we present the results of model calculations for each of 
these modes of deformation for the specific loading 
conditions employed in the experiments on auxetic 
P T F E  [5] and U H M W P E  [14, 21]. A comparison of 
the model predictions is then made with the experi- 
mental data for each polymer. 

3.1. Model calculations 
Fig. 4a and b are plots of the Poisson's ratio and 
Young's modulus behaviour for each mode of defor- 
mation in the NF  model with respect to the total true 
strain in the loading direction for tension along the 
x axis and compression along the y axis, respectively. 
These illustrate the highly strain-dependent variations 
of the properties. Fig. 4a and b correspond to the 
loading conditions employed in the experimental 
measurements of the mechanical properties of auxetic 
P TF E  [5] and U H M W P E  [-14], respectively. For  
Fig. 4a, v=y and E= were calculated using Equations 
2 and 14 (hinging), Equations 40 and 43 (flexure), and 
Equations 63 and 67 (stretching), respectively. For  
Fig. 4b, vy= and Ey were calculated using Equations 16 
and 22 (hinging), Equations 45 and 50 (flexure), and 
Equations 69 and 73 (stretching), respectively. The 
total true strain used in Fig. 4a was calculated by 
integrating the infinitesimal increment of true strain 
defined by Equation 13, i.e. 

S ax = d X / X  = l n ( X / X o )  
o 

(77) 

Substituting Equation 3 into Equation 77 yields 

G = In [-(a + I c o s ~ ) / ( a  + lcosao)] (78) 

Similarly, the total true strain used in Fig. 4b was 
calculated using 

G" = l n [ ( b -  l s i n a ) / ( b  - / s i n ~ o ) ]  (79) 

Values of ~ are indicated on the top x axis of Fig. 4a 
and b. 

The following parameters were used in the model 
calculations of Fig. 4a: b = 0.2a, 1 = b / 2  and ~o = 90 ~ 
These parameters were chosen in agreement with pre- 
vious experimental [5] and theoretical [6] works and 
are consistent with the initial undeformed microstruc- 
ture being observed to be fully densified due to a pre- 
conditioning process [5] prior to testing (Fig. lb). To 
ensure the arbitrary dimensions of Young's modulus 
were compatible for all deformation modes, and to 
enable comparison of the strain-dependent behaviour, 
the force coefficients used were as follows: 
K h / l  2 = K f / l  2 = K s = 1. 

The v~y behaviour is identical for the hinging and 
flexure modes of deformation: v~y = 0 at ~ = 0, be- 
coming increasingly negative as G increases until 
G = 0.095 (i.e. ~ = 0 ~ where v~y is infinitely negative. 
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Figure 4 (a) NF model ( ) v=y and (---) E= versus G curves for 
hinging, flexure and stretching modes of deformation, b/a = 0.2, 
l = 0.1 a and So = 90 ~ with Kh/1 z = Kf/12 = K~ = 1. Corresponding 
values of ~ are indicated along the top x axis. (b) NF model ( ) 
vy~ and (---) Ey versus ey curves for hinging, flexure and stretching 
modes of deformation, b = a, l= 0.036a and ~to = 0 ~ with 
Kh/12 = Kr/12 = Ks = 1. 
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The stretching mode of deformation shows markedly 
different behaviour: vxy is infinite and positive at 
cx = 0, decreasing in magnitude as ax increases until 
the final strain where Vxy = 0. 

The Ex trends for hinging and flexure are also iden- 
tical, differing only in magnitude by a factor of 3 for 
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the values of  Kh and Kf employed here (see Table I 
and Equat ions  15 and 44). For  both modes, E= has 
a relatively small finite value at e= = 0, increasing 
slowly as e= increases until  ~= approaches  0.095 where 
Ex undergoes a dramat ic  increase tending towards 
infinity at ~= = 0.095. Once again the stretching mode  
shows markedly  dissimilar behaviour:  Ex is infinite at 
~= = 0 (due to the fibrils being oriented perpendicular  
to the loading direction in this case and hence stretch- 
ing along the fibril length cannot  occur), decreasing to 
a relatively small finite value at the final strain. 

The parameters  employed in the model  calculations 
for Fig. 4b were a = b, l = 0.036b and ao = 0 ~ as used 
in [14]. Once again Young 's  modulus  compatibil i ty 
was ensured by using K , / l  2 = Kf/12 = K, = 1. 

The vy= curves for hinging and flexure are identical, 
with Vyx = 0 at ~y = 0, slowly becoming increasingly 
negative as the strain increases until ay approaches  
- 0.037 (i.e. ~ tends to 90 ~ where vy= rapidly tends to 

an infinitely large negative value. Fo r  the stretching 
mode  of deformation,  vy= is infinite and positive at 
ay = 0, rapidly decreasing to a small positive value as 
the compressive strain increases slightly, followed by 
a slowly decreasing tail for the remainder of the strain 
until vyx = 0 at ~y = - 0.037 (a = 90~ 

The Young 's  modulus  curves for hinging and 
flexure follow identical trends, Ey being small and 
finite at ay = 0, increasing slowly with increasing com- 
pressive strain until a rapid increase to infinity is 
observed as ey approaches  - 0 . 0 3 7 .  The stretching 
mode  of deformat ion exhibits the opposite Young 's  
modulus  behaviour,  Ey being infinite at ~y = 0, rapidly 
decreasing as the compressive strain increases slightly, 
followed by a long tail off to a relatively small finite 
value at ~y = - 0 . 0 3 7  (a = 90~ Once again we see 
that  hinging and flexure are easier to achieve when the 
fibrils are aligned normal  to the loading direction than 
when they are parallel to the loading direction, where- 
as stretching occurs more  readily when the fibrils are 
aligned along the loading direction than when they are 
perpendicular  to the loading direction. 

3.2. Comparison with experimental data 
In this section we establish the best-fit model  para-  
meters for bo th  P T F E  and U H M W P E  and compare  
the model  strain-dependent elastic modul i  with the 
known experimental data  for these two polymers. 

3.2. 1. PTFE 
3.2.1.1. Obtaining the geometric variables. The vari- 
ables in the model  are the initial fibril angle, ~0, 
nodule aspect ratio, a/b, and fibril length, I. If  we 
assume, for now, that  the experimental precondit ion- 
ing process applied to the P T F E  specimen leaves the 
initial microstructure in the closest possible packing 
then ~o = 90~ and 1 = b/2; see Fig. lb. F r o m  Fig. 4a 
we see that  the Young 's  modulus  due to stretching is 
at its highest value at ~ = 90 ~ whereas the Young 's  
moduli  due to hinging or  flexure are at their lowest 
values. Hence at high values of  a the stretching mode  
will be unfavoured energetically due to it having 
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a higher strain energy (which is propor t iona l  to the 
Young's  modulus)  associated with it. Experimentally 
the fibrils were observed to align themselves along the 
loading direction as the loading strain increased. Fur-  
thermore, the fibrils were observed to remain taut  
throughout .  Hence we shall assume that  the deforma- 
tion observed at the lower end of the strain range 
covered experimentally is predominant ly  due to hing- 
ing. (Because the elastic modul i  due to both  hinging 
and flexure have identical strain-dependent behaviour  
(Fig. 4) the distinction between hinging and flexure is 
not  critical in fixing the parameters  to be employed in 
the model.) 

In Fig. 5a we plot the model  v~y versus ~ curves 
for b/a = 0.2, 0.25 and 0.3 with I = b/2 and ~o = 90 ~ 
in each case for the hinging mode  of deformation 
in the N F  model  (calculated from Equat ions  2 and 
78). For  compar ison  the experimental data  points 
up to e~ = 0.15 are also plotted. An aspect ratio 
of b/a = 0.25 provides an excellent fit to the experi- 
mental  data  up to ~ ~ 0.10. The value of I determines 
where the model  v~y curve tends to an infinitely 
negative value for a given value of a (i.e. at a = 0~ 
v~y = - oo, Equat ion  2, at ~ = in [(a + l)/a], Equa-  
tion 78). Hence the b/a = 0.2 (l = 0.1a) curve tends to 
v~y= - oo at a lower strain than the b /a=0.25  
(l = 0.125a) curve which, in turn, tends to Vxy = - oo 
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Figure 5 (a) NF model vxy versus Cx curves for the hinging mode of 
deformation in the NF model. Fits are for (a) b/a = 0.2, (b) 0.25 
and (c) 0.3 with I = b/2 in all cases, Experimental data points (0) for 
PTFE are also shown for comparison. (b) NF model v~y versus ~x 
curves for the hinging mode of deformation in the NF model. 
Curves are for b/a=0.25 with / = (  ) 0.11a (<b/2), 

Q 0.125 a ( = b/2), and ( . . . .  ) 0.14a ( > b/2). Experimental data 
points (0) for PTFE are also shown for comparison. 



at a lower strain than the b/a = 0.3 (1 = 0.15a) curve. 
From SEM observation b/a ~ 0.2 - 0.25 is reported 
[6] to be a typical nodule aspect ratio range for the 
P T F E  specimens which is in agreement with the b/a 
= 0.25 model fit to the  data in this case. 

For  the b/a = 0.25 curve in Fig. 5a, the fit between 
0.10 < sx _< 0.12 rapidly deteriorates as a~ increases. 
However, in this strain range, cx approaches 0 ~ and, 
therefore, we might expect the fibril stretching mode of 
deformation to become important  as the fibrils be- 
come aligned along the loading direction. Considering 
the simplicity of the model, the fit of the b/a = 0.25 
v~y versus ex curve to the experimental data for 
ax < 0.10 is excellent. 

Now consider the situation where l #  b/2. For  
1 < b/2 then the closest packed (initial) microstructure 
is as shown schematically in Fig. lc. Once again 
% = 90 ~ and Equations 2 and 78 yield v~y = 0 at 
e~ = 0 due to hinging. However, for 1 > b/2 then 
Fig. ld  is the closest packing (i.e. initial/undeformed) 
microstructure and hence Equation 78 yields the 
model a~ values with ct0 = %, where czo is given by 

sincto = b/21 (80) 

Because c% < 90 ~ then, for hinging, v~y < 0 at a~ = 0 
(se Equation 2 and Fig. 4a). 

Fig. 5b compares the N F  model Vxy versus ex curves 
due to hinging for b/a = 0.25 and I = 0.125a ( = b/2), 
0.11a ( < b/2), 0.14a ( > b/2). The experimental data 
up to ~ = 0.15 for P T F E  are also included for com- 
parison. The experimental data points appear  to ex- 
trapolate back to v~y ~ 0 at ~ = 0. Hence the model 
curve for 1 > b/2 (i.e. l = 0.14a in this case) does not 
give the correct trend because v~y < 0 at ~ = 0 (i.e. 
vxy = - 4 . 3  at ~ = 0 in Fig. 5b). For  l =  0.11a (i.e. 
l < b/2) the model v~y curve gives good agreement at 
low ~ values but the agreement deteriorates at a lower 
strain ( ~  ~ 0.08) than for the l = 0.125a (i.e: l = b/2) 
curve ( ~  ~ 0.10). Hence we conclude that the curve 
with l = b/2 is the best fit of the model to the P T F E  
data for an aspect ratio of b/a --0.25. This is in 
agreement with experimental observation [5] of full 
densification in the undeformed condition. 

3.2.1.2. Comparison of elastic modufi with model. The 
Poisson's ratio, vxy, and engineering Young's 
modulus, E~, data from [5] are plotted against the 
total true strain in the loading (x) direction, r in 
Fig. 6a and b, respectively. The data show three dis- 
tinct regions of deformation behaviour. Region 
I (0 < ~ < 0.15) is a low Young's modulus region in 
which the Poisson's ratio value is negative, increasing 
in magnitude as the strain increases until a maximum 
negative value of v~y ~ - 11 is achieved at ~x = 0.15. 
In region II  (0.15 < ~ < 0.215) the Young's modulus 
shows a steep increase, eventually achieving a plateau 
at the higher strain range in this region. The value 
of the Poisson's ratio in this region decreases in 
magnitude to v~y ~ 0  at a~ =0.215. Region I I I  
(0.215 < ~ < 0.29) shows a steep decrease in Young's 
modulus followed by a tailing off to E~ ~ 0 at 
~ = 0.29. The Poisson's ratio for region I I I  goes posit- 

ire and remains at a constant value (vxy ~ 1.2) for 
~x > 0.23. A maximum uncertainty in the Vxy data of 
8% is quoted in [5]. 

In an earlier work it was suggested that nodule 
rotation was required to explain the modulus and 
Poisson's ratio curves beyond region I of Fig. 6. In this 
model the fibrils were treated as inextensible rods. 
With the addition of deformation of the fibrils them- 
selves, a more realistic scenario, it is possible to de- 
scribe the full shape of the curves without the need for 
nodule rotation. In this case, for cx near 90 ~ the defor- 
mation mode is predominantly fibril hinging or 
flexure, with fibril stretching taking over as ~ --* 0 ~ In 
reality these mechanisms will exist concurrently but 
for simplicity we shall consider them occurring con- 
secutively. 

In this new scenario, then, region I of Fig. 6 is due to 
nodule translation due to fibril hinging, region II  due 
to elastic fibril stretching and region I I I  due to plastic 
deformation of the fibrils. If  the physical origin of the 
hinging force coefficient is due to friction between 
nodule particles, as suggested in [5], then this hinging- 
plus-stretching N F  model is consistent with experi- 
mental observation [5] where the deformation during 
region I of Fig. 6 is apparently inelastic, that during 
region II  is linearly elastic and in region I I I  the mater- 
ial deforms plastically. 
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Figure 6 (a) Experimental v~y versus e:, data (O) for PTFE. 
(b) Experimental E~x versus ax data (O) for PTFE. Also shown are 
NF  (hinging-plus-stretching) model calculations for b = 0.25a, 
l=b/2and~o=90~ ) the fit to the vxy data, ~ - - - - )  the fit to 
the E~ data. ( - - ~  N F  model calculations for b = 0.25 a, l = 0.16a 
and ~o = 90 ~ from fit to the E~, data. All N F  model E~ predictions 
were normalized to the peak experimental E~, value of 
E~ = 0.15 GPa.  
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The transition strain from fibril hinging to stretch- 
ing will be considered to occur at a fibril angle of cx,, 
the value of ~x at which the engineering Young's 
moduli due to hinging and stretching are equal. F rom 
Fig. 4a it is clear that the modulus due to hinging is 
less than that due to stretching for a > as and, there- 
fore, hinging will be presumed to be the only deforma- 
tion mode in this simplistic scenario. At %, hinging 
ceases, because the modulus due to stretching would 
be lower than that due to hinging for any further 
decrease in a. % is, therefore, the final fibril angle, with 
further deformation thereby due to fibril stretching. 
The transition from elastic to plastic fibril extension is 
described by a decrease in the value of the stretching 
force coefficient, Ks. 

Equating Equations 15 and 68 we see that ~s is 
related to the appropriate force coefficients by 

tan2% = K~ff/Ks (81) 

where Kff f is an effective hinging force coefficient 
defined as 

K~ ff = Kh/l 2 (82) 

Hence, the value of K~ff/K s fixes the value of % and 
vice versa. 

Two methods were used to determine the value of 0~s 
to be used in the NF  model calculations for PTFE.  In 
the first method the value of a~ was fixed by requiring 
v~y ~ + 1.2 due to fibril extension (Equation 63). This 
is the experimentally observed value of the Poisson's 
ratio in region III,  which is assumed to correspond to 
plastic extension of the fibrils, i.e. hinging has ceased in 
this region and, therefore, ~ = %. This yields as ~ 13 ~ 
for the previously determined best-fit nodule/fibril di- 
mensions of b = 0.25a and l =  b/2. The N F  model 
Poisson's ratio and engineering Young's modulus cal- 
culations for b = 0.25a, l = b/2, CZo = 90 ~ and as = 13 ~ 
are included in Fig. 6a and b, respectively. In the 
calculations the elastic moduli due to hinging (Equa- 
tions 2 and 15) were used for ~ > % (i.e. a~ < 0.115 for 
a~ = 13~ and the elastic moduli due to stretching 
(Equations 63 and 68) were used for a = %. The 
X unit-cell length during fibril extension at ~s is given 
by 

sx ~ 0.215 were assumed to be due to fibril hinging 
and elastic stretching, respectively. Assuming 
l = 0.125a (i.e. b/2) and CXo = 90 ~ then the value of the 
fibril angle during hinging at ~= ~ 0.08 is calculated 
from Equation 78 as ~ ~ 50 ~ From Equations 15, 68 
and 82 we have 

E~ ((x = 50 ~ K ~  ff c o s  2 0~ s 
(85) 

E~(%) sin 2(50~ Ks 

where E ~ ( ~ = 5 0  ~ ) ( ~ 0 . 0 0 2 G P a )  and E~(~s) 
( ~ 0 . 1 5 0 G P a )  are the experimental engineering 
Young's moduli at e= ~ 0.08 and 0.215, respectively. 
Assuming % is close enough to 0 ~ so that cos 2 ~s can 
be considered equal to unity gives K~/K~ff~ 128. 
Hence, from Equation 81 we have as ~ 5 ~ The long- 
dashed lines in Fig. 6a and b correspond to the N F  
model calculations with % = 5 ~ All other model para- 
meters were the same as in the calculations for 
% = 13 ~ 

The two N F  model calculations yield similar results 
which, considering the simplicity of the model, would 
appear to indicate that the tWO independently deter- 
mined values of % are in reasonable agreement with 
each other. 

Comparison of the model and experimental data of 
Fig. 6a and b shows that many of the features ob- 
served experimentally are now predicted by the model. 
In particular, the Young's modulus peak is at a higher 
strain range than the maximum negative value v=y. 
The lower strain limit of the E~ peak is seen to corres- 
pond to the onset of fibril extension and also the rise in 
the modulus due to hinging as ~ approaches 0 ~ The 
upper strain limit of the E~ peak simply corresponds 
to the strain at which plastic fibril deformation com- 
mences. 

Fig. 6a illustrates that when stretching becomes the 
dominant deformation mode v=y becomes positive and 
almost constant with strain for l < a (because a re- 
mains constant in this case - see Equation 63). This is 
observed experimentally where, in regions II  and III,  
v=y goes from a large negative value to a constant 
small positive value at the higher strains. 

X = a + (1 + As)cos% (83) 

where As is the fibril extension. Substituting Equation 
83 into Equation 77 yields the model expression used 
to calculate the total true strain in the loading direc- 
tion during the fibril extension phase 

~x = ln{[a + (1 + As)cos%]/(a +/cos%)} (84) 

In Fig. 6b the N F  model Young's modulus data due to 
elastic fibril stretching were normalized to the peak 
value in the experimental data (0.15 GPa). Plastic de- 
formation was modelled by decreasing the value of Ks 
by an arbitrary factor of 10 at the experimentally 
observed transition strain from region II  to I I I  of 
ex = 0.215. 

In the second method used to calculate %, the 
experimental Young's modulus data at ax "~ 0.08 and 

3.2.2. UHMWPE 
The experimental vyx versus ey data for U H M W P E  
under compression (i.e. e~ = - ey) in the y direction 
are plotted in Fig. 7. The experimental data can be 
divided into two distinct regions. In region 
I (~  < 0.0367) vyx has a small negative value at the 
lower strains, increasing slowly with strain at inter- 
mediate strains before increasing rapidly in magnitude 
to vy= ~ - 15 at the highest strains. At the transition 
from region I to region II  (~  = 0.0367), vyx assumes 
a large positive value (vy= ~ + 6) which decreases 
with increasing strain to vy~ ~ 0 at ~ = 0.05. For  
~ > 0.05 the experimental data indicate vy= ~ 0. 

No Young's modulus data al?e available for this 
U H M W P E  data set. Owing to the much higher stiff- 
ness of the auxetic U H M W P E  specimen, there was no 
need to precondition the sample prior to testing. 
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Figure 7 Experimental vy~ versus ~ data for UHMWPE [-21] (O). 
Also shown are NF (hinging-plus-stretching) model calculations for 
a = b a n d ~ 0 = 4 0 ~  ~. 

The final stage of the fabrication of the sample of 
U H M W P E  used by Neale et al. [14] involves extru- 
sion of the material through a die [7] and it was noted 
that the material expanded in the radial direction (x 
direction in Fig. 1) on leaving the die. Hence for 
U H M W P E  the initial undeformed structure consists 
of fully expanded material with fibrils lying in the 
x direction when So = 0 ~ This is the value of a0 used 
by Neale et al. [14], where a simple hinging model is 
found to produce the observed trends of vyx in region 
I of Fig. 7, but fails tc, describe the behaviour in region 
II. 

The value of a~ at the boundary between regions 
I and I I  in Fig. 7 determines the ratio of 1/b, for any 
given initial fibril angle ~o, to be employed in the N F  
model, because s = 90 ~ at this point (if full hinging is 
assumed to occur), see Equation 79. The major-to- 
minor nodule axes ratio is found to be typically 
a/b = 1 for U H M W P E  [13,14]. The N F  model 
curves for a = b, l = 0.036b and 0~0 = 0 ~ have already 
been presented in Fig. 4b where it is seen that the 
hinging and flexure Poisson's ratio predictions show 
the trends observed in.region I of the experimental 
data of Fig. 7. However, So = 0 ~ yields vy~ = 0 at 
~y = 0 whereas experimentally the data indicate 
vy~ < 0 at ay = 0. This implies So > 06 in the unde- 
formed state. Fig. 7 shows the N F  model vy~ versus 
a~ curve for a = b ,  I = 0 . 0 9 5 b  and S o = 4 0  ~ �9 This 
choice of parameters is consistent with typical nodule 
axes ratios observed for U H M W P E  and ensures 
a transition strain ofa~ = 0.0367 where for ~ < 0.0367 
deformation is due to fibril hinging, and for 
a~ > 0.0367 deformation is due to fibril stretching. 
With these parameters  the model follows the trends of 
the experimental vy:~ data v e r y  closely, i.e. a small 
negative value increasing slowly with strain until 
a~ approaches 0.0367, whereupon a rapid increase in 
magnitude towards a large negative value is observed 
at ~ = 0.0367. An initial fibril angle of ~o = 40~ indi- 
cates that the material is not in the fully expanded 
condition in the undeformed state. This is in agree- 
ment with other forms of auxetic U H M W P E  fab- 
ricated by the same processing route where a value of 
~o = 30 ~ is indicated from the model as a typical 
initial fibril angle [21]. 

At a = 90 ~ (i.e. ~ = 0.0367) fibril hinging ceases to 
be possible under further compression along the 
y axis. However, because l < b in this case, the nodules 
are only in contact in the x direction. Hence further 
compression in the y direction leads to fibril stretching 
(or breaking). This is illustrated in Fig. lc where it is 
seen that, for rectangular nodules, fibril extension 
leads to a change in Y but no change in X. Conse- 
quently, vy~ = 0, which is exactly the value of vyx 
obtained from Equation 69 due to stretching at 

= 90 ~ For  a~ _> 0.05, the experimental data indicate 
vy~ ~ 0. Hence for ~ > 0.05 the experimental data are 
consistent with deformation due to fibril stretching at 
s = 90 ~ 

We can say, therefore, that the N F  model calcu- 
lations for a = b, 1 = 0.095b and ~o = 40~ give excel- 
lent agreement with the experimental Poisson's ratio 
data in the strain ranges 0 < ~ . < 0 . 0 2 6  and 
0.050 < ~ < 0.065 when complete fibril hinging is fol- 
lowed by fibril stretching. 

4. Discussion 
We have seen that the general features of the experi- 
mental vxy and E~ data for P T F E  are predicted by the 
NF  model when fibril stretching follows fibril hinging. 
However, the model calculations in Fig. 6 clearly rep- 
resent a limiting case. In the real material there will be 
competition between the hinging and stretching defor- 
mation modes throughout the total strain range. In 
other words, whilst hinging must clearly dominate in 
the initial stages of the deformation, some fibril 
stretching will occur. As c~ approaches 0 ~ fibril stretch- 
ing will become increasingly dominant. This will have 
two effects. Firstly, the transition strain between the 
predominantly hinging and stretching modes will oc- 
cur at a higher value of strain as a result of the increase 
in fibril length. Secondly, the transition itself will be- 
come smeared over a range of strain. These two effects 
are observed in the experimental data of Fig. 6 and are 
currently under investigation both theoretically and 
experimentally. 

The first of these effects is also illustrated in Fig. 6a 
and b where the N F  model calculations for b = 0.25a, 
c~o = 90 ~ and 1 = 0.16a are shown with % = 5 ~ from 
the fit to the experimental Young's modulus data 
(second method). This choice of 1 produces a value of 
the transition strain of ~x ~ 0.148 which is in agree- 
ment with the experimental data. Note  that no model 
data with l =  0.16a are included for G < 0.095 in 
Fig. 6 because this would imply ~ > sc (equation 80) 
and hence is physically meaningless. In Fig. 6a the 
experimental data initially (0 _< G < 0.10) follow the 
model hinging curves for I = 0.125a, then in the strain 
range 0.10 < ~ < 0.148 the experimental data tend 
towards the model hinging curve with 1 = 0.16a, i.e. 
fibril stretching becomes significant in this range. At 
~ = 0.148 fibril stretching becomes dominant  and the 
experimental data tend towards the limiting value due 
to stretching. The effect of increasing the fibril length 
on the engineering Young's modulus data is seen to be 
a decrease in the width of the E~ peak, due to an 
increase in the strain at which stretching occurs (see 
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Fig. 6b), thus improving the agreement with the ex- 
perimental data. 

The general features of the U H M W P E  vyx data are 
also explained by the hinging-plus-stretching scenario. 
Improved agreement will also be expected by consid- 
ering hinging and stretching to act concurrently rather 
than consecutively. The large positive Vyx values that 
are observed experimentally at the transition from 
hinging to stretching are not predicted by the model. 
Fibril stretching would require ~ ~ 10 ~ to predict 
these values whereas ~ ,~ 90 ~ at the transition from 
hinging to stretching. However, when ~ ~ 90 ~ the 
nodules are in close proximity to each other (i.e. the 
material is densified) and so nodule shape effects may 
become important at the transition from hinging to 
stretching. Experimentally, the nodules are observed 
to be elliptical or circular rather than rectangular 
[13]. Consequently, when circular nodules, for 
example, are in contact (analogous to Fig. lc), hinging 
ceases. Further compression in the y direction would 
cause the nodules to move closer together in the y di- 
rection and further apart in the x direction, resulting 
in a positive vy~ value, compared to vy~ = 0 for rectan- 
gular nodules. Hence the large positive values may be 
a result of nodule interactions due to non-rectangular 
nodule shapes. 

In Section 2.2 the fibril flexure force coefficient was 
found to be related to the Young's modulus of the 
fibril material and the fibril dimensions by Equation 
57. The form of the hinging force coefficient is likely to 
be complicated, being either due to the friction forces 
acting between the nodules as suggested for PTF E  [5] 
or due to shearing and polymer-chain alignment ef- 
fects in the hinge material. We now consider the phys- 
ical origin of the stretching force coefficient. 

Consider the extension, As, of a fibril of length, l, 
thickness, t, depth, w, and Young's modulus, Es, due 
to a force, AF, applied along the length of the fibril. 
From Hooke's law 

ES ~ m  

= ~)- Ass (86) 

and, therefore, from Equations 58 and 86 

Ks = Esw(t / l )  (87) 

Hence the stretching force coefficient is determined by 
the intrinsic Young's modulus of the material forming 
the fibril and the fibril dimensions. 

Having derived the engineering Young's modulus 
expression due to fibril stretching in the NF  model 
(Equation 68) and the form of the stretching force 
coefficient (Equation 87) it is possible to estimate the 
value of the intrinsic Young's modulus, Es, of the 
fibrils during the elastic deformation from the experi- 
mental engineering Young's modulus data for PTFE.  
It is readily shown that in three dimensions Equation 
68 becomes 

Ks Xo 
E~ - cos2 ~ Yo Zo (88) 
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where X0, Yo and Zo are the undeformed unit-cell 
lengths. From the fits to the vxy data we have a nodule 
aspect ratio of b/a = 0.25, an initial fibril length of 
Io = b/2 and an initial fibril angle of ~0 = 90 ~ These 
initial parameters are in agreement with experimental 
observation [5,6] of a fully densified undeformed 
microstructure with a ~ 20-25 ~tm and b ~ 5 ~tm. 
Substituting these initial parameters into Equations 
3 and 4 we find 

Xo = 8 Yo (89) 

When the engineering Youngs modulus has achieved 
its peak value (E e = 0.15 GPa) we have 
0.199 _< ~x -< 0.215 (see Fig. 6b) which from Equation 
78 requires l to be approximately double its initial 
value (due to drawing out of the hinge material) for 

~ 0 ~ i.e. 

l = 210 

= b  

= Yo (90) 

From SEM examination, the nodules in the real ma- 
terial are observed to be disc-like in shape with dia- 
meter, a, and thickness (in the y direction), b [6]. In the 
absence of any knowledge of the nodule connectivity 
in the z direction we will assume that the Zo unit-cell 
length corresponds to the diameter of the nodules, i.e. 

Zo = a = 41 (91) 

For  fibrils of equal thickness and width (i.e. w = t) 
then substituting Equations 87, 89, 90 and 91 into 
Equation 88 yields 

Es = ~-  (92) 

where we have used cos2~ ~ 1 (i.e. ~ ~ 0 ~ when fibril 
stretching dominates. In the N F  model each nodule 
has four fibrils attached to it, whereas in the real 
material many fibrils are observed to be attached to 
each nodule. Hence the fibril aspect ratio to be em- 
ployed in the calculations of the fibril Young's 
modulus is given by 

(t/l) = ~1/2 (tfibril/1) (93) 

where ;~ is the ratio of number of fbrils in the real 
material to number of fibrils in the model, and tfibril is 
the fibril thickness in the real material. SEM examina- 
tion [5] indicates tfibril ~ 50 nm and ~. = 30 _+ 20 (i.e. 
one model fibril corresponds to ~ 30 fibrils in the real 
material). Hence the range of (t/l) to be employed in 
Equation 92 is 

0.03 _< t / l  <_ 0.07 (94) 

with (t/1) = 0.055 for X = 30. Substituting 
E~ = 0.15 G P a  (see Fig. 6b) and Relation 94 into 
Equation 92 yields a range of values of the Young's 
modulus of the fibrils for P T F E  of 15 < Es _< 75 GPa  
with E~ = 25 G P a  for )~ = 30. 

This range of E~ is much higher than the value of 
0.3 < Es < 0.7 G P a  for bulk P TF E  but is of the right 
order of magnitude for highly ordered PTFE.  We have 
calculated a modulus of Es = 288 G P a  at zero strain 



and Es = 230 GPa  at a tensile strain of 10% along the 
backbone chain of PTFE  using the P O L Y G R A F  mo- 
lecular modelling program [22], which is a well-estab- 
lished package for predicting a range of properties for 
polymeric materials. Given that the fibrils will not 
contain fully ordered PTFE  molecules, a range of 
15 < Es < 75 GPa  seems reasonable for the Young's 
modulus of the single fibrils of P T F E  observed in the 
experimental specimen of [5]. A secant modulus of 

1.5 GPa  has been reported [23] for P T F E  fibres of 
diameter ~ 0.13 cm. These fibres were themselves 
noted to be highly fibrous and so they may be con- 
sidered to be hierarchical structures consisting of three 
levels: the upper level being the fibres themselves 
which consist of the intermediate level of fibrils which, 
in turn, are made up of the lower (atomic) level of 
PTF E  chains. 

For  the case of UHMWPE,  if we take previously 
reported [24] values of the modulus 0.19 <E~ 
< 0.36 GPa  to be equivalent to the peak (hence 
stretching modulus) we can determine the value of 
(t/1) required to produce a given fibril modulus, Es. 
The three-dimensional equivalent of Equation 74 is 

Ks Yo 
E~, = sin2 a Xo Zo (95) 

where Ks is given by Equation 87 and Xo, Yo and Zo 
are the initial unit-cell lengths. From earlier, the best- 
fit NF  model parameters are a = b, l =  0.095b and 
ao = 40 ~ Therefore, from Equations 3 and 4 we have 
Xo ~ Yo. If we assume that Zo is defined by the depth 
of the nodules then 

Z = b = 10.5/ (96) 

Hence, assuming a ~ 90 ~ Equation 95 becomes 

(t/1) = (10.5 E~/Es)  1/2 (97) 

If the fibrils exhibit a Young's modulus equal to that 
along the backbone chain of PE ( ~  300GPa  
[25-28]) then a value of ( t / l )  ~ 0.08 is calculated for 
E~ ~ 0.2 GPa. Assuming X = 30 (as for PTFE) then 
the single fibril aspect ratio calculated for U H M W P E  
is (tfibrn/l) ~ 0.015 for E~ = 300 GPa. Fibril aspect 
ratios in this range are common in this material [7, 13, 
14]. 

Finally, little has been said of fibril flexure. This is 
simply because no evidence of it has been observed. 
While significant changes in fibril angle have been 
seen at different stages of deformation [5] the fibrils 
are always observed to be straight. For  the strains 
applied, curvature of the fibrils would be visible if 
flexing was operating. 

5. Conclusion 
The general deformation behaviour of microporous 
PTF E  and U H M W P E  can be understood in terms of 
hinging and stretching mechanisms of a node-fibril 
network microstructure. In this paper we have 
modelled fibril hinging followed by fibril stretching 
which results in a sudden change in properties at the 
transition point. However, the experimental data for 

P TF E  show a transition smeared over a range of 
strain, indicating that hinging and stretching act con- 
currently rather than consecutively. For  U H M W P E  
a sharper transition may exist although in this case it 
is thought that a nodule-shape effect may obscure the 
transition between hinging and stretching. The domi- 
nant mechanism at any strain is governed by the 
relative force coefficients and fibril orientation at that 
strain. 

Fibril flexure and hinging result in exactly the same 
Poisson's ratio values and Young's modulus trends. 
Detailed knowledge of fibril geometry, intrinsic mater- 
ial properties and the mechanism governing hinging 
are needed to determine the force coefficients involved 
in the deformation. 

The Young's modulus of the fibrils in P TF E  has 
been estimated from the experimental E:~ data for the 
PTFE specimen. The fibril modulus is consistent with 
the fibrils consisting of highly ordered PTFE,  as in- 
dicated from scanning electron micrographs. 
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